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Chapter 1

GPS basics

Here we give a breif introduction to the basics of legacy GPS signals and how code
based position solutions can be obtained using them. This is the standard ob-
servable that is used by consumers to obtain postion solutions. For compleateness
we also mention the phase observable but do not attempt to describ how such an
observable can be used.

1.1 GPS signal

As of writing GPS is currently undergoing a modernization to improve both civilian
and military use. Between 1990 and 2004 legacy satellites were launched while
from 2005 modernized satellites have been launched. According to the National
Coordination Office for Space-Based Positioning, Navigation, and Timing [2] this
is in an effort to upgrade the features and performance of GPS. Currently GPS
transmits on three different RF links from the satellites to end-users. The RF
links are called L1, L2 and L5 and are named after the bands that they transmit
in. Code Division Multiple Access (CDMA) is used as the channel access method
so all satellites used the same carrier frequencies. L1 has a nominal frequency
of 1575.42Mhz as seen from Earth, L2 1227.60Mhz and L5 1176.45Mhz. These
nominal frequencies are modulated with various signals to aid navigation. The
current GPS modernization consists of generally improving the hardware as well
as adding more signals that are sent over the RF links. The GPS modernization
currently underway will take many years and satellites producing signals such as
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CHAPTER 1. GPS BASICS

L1C on L1 are not expected to be launched until 2016 with 24 satellites expected
by around 2026 [4]. We restrict our investigation here to that of legacy L1 signals.

Figure 1.1: Legacy L1 signal generation block diagram

GPS legacy signals on L1 consist of a coarse acquisition Pseudo Random Num-
ber (PRN) code called C/A sent at 1.023Mb/s, a precise PRN code P sent at
10.23Mb/s which is called Y if encrypted, and navigation data called NAV sent
at 50b/s. The two PRN codes are unique to each satellite and each spread the
navigation signal. Bits of the PRN codes are also called chips. L1 consists of
in-phase and quadrature components. Each component is separately modulated
using Binary Phase Shift Keying (BPSK) as their modulation technique. One
modulator is supplied with a bit train from modulo-2 addition of P(Y) and NAV
while the other is supplied with a bit train from modulo-2 addition of C/A and
NAV. The signals and the carrier frequencies are derived from a single time source
and synchronized with one another thus causing the signals to be bit phased with
one another in addition to the signals being synchronized with one another at a
higher level. Figure 1.1 depicts a block diagram of the generation of such signals.
The instantaneous L1 wavefront a satellite sends WTX (t) at a time t, can be
written as follows assuming the satellite clock keeps perfect frequency.

WTX (t) = ATX<
{
S (t+ ∆TTX (t)) e2πi(tfT X+φT X

0 )
}

(1.1)

Where S (t) = NAV (t)
(
P (Y ) (t) ei0 + C (t) eiπ/2

)
is the composite signal, C (t)
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C/A code, P (Y ) (t) P(Y)-code, NAV (t) navigation data, φTX0 satellite oscillator
phase at time zero, ATX transmission amplitude, φTX0 satellite oscillator phase at
time zero, fTX nominal satellite oscillator frequency as seen from Earth so as to
account for general relativistic effects, f0 1575.42Mhz as seen from Earth, and τTX0

is the satellite composite signal offset at time zero. C,P (Y ) , NAV ∈ {−1, 1}
and are functions so as to produce the correct composite signal where a mapping
of 0 → 1 and 1 → −1 has been applied. At the receiver the instantaneous L1
wavefront a receiver receives WRX (t) at a time t, can then be written as follows
assuming no hindrance by the atmosphere.

WRX (t) = ARX<
{
S (t+ ∆TTX (t)−∆t (t)) e2πi((t−∆t(t))fT X+φT X

0 )
}

(1.2)

Where ARX is reception amplitude and ∆t (t) is the transmission flight time from
the satellite at transmission time to the receiver at reception time t. It’s important
to realize that ∆t (t) is not the flight time between the satellite and receiver at
time t, but rather the flight time based as the receiver sees it. It is similar to
when a airplane passes by and one hears the sound of the plane lagging where the
plane actually is. The flight time of the sound from the plane as determined by
the listener is different from the flight time one would get from calculating where
the plane actually is to the user with respect to the same reception time.
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1.2 What the GPS receiver does to the received
WRX (t) signal

Figure 1.2: Simplified version of a possible GPS satellite acquisition and tracking
scheme

Figure 1.2 shows a simplified version of what a GPS satellite receiver can do to
acquire the satellite and track the signals that it produces. Upon reception the
receiver tries to separate the signals from L1 and track the C/A code and the carrier
phase. This can effectively be performed by mixing WRX (t) with a complex local
oscillator LO (t) = e2πi(tfRX+φRX

0 ) where fRX is the frequency of the oscillator
and φRX0 the phase of the oscillator at time zero, filtering using a low pass filter
LPF , then phase and/or frequency tracking to stop rotation along with correct
C/A timeing to match the C/A code as sent by the satellite so as to acquire access
to the data being sent by the satellite.

1.2.0.1 Obtaining the baseband signal R(t)

After mixing with the local oscillator and filtering using the low pass filter, the
receiver obtains the following baseband, where, ∆f = fRX − fTX and ∆φ0 =
φRX0 − φTX0 .

R (t) = 2
ARX

LPF {WTX (t)LO (t)}

= S (t+ ∆TTX (t)−∆t (t)) e2πi(t∆f+∆t(t)fT X+∆φ0) (1.3)
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We define t∆f + ∆t (t) fTX + ∆φ0 as the received beat carrier phase (carrier
phase).

1.2.0.2 Stopping rotation

We see that this is a constellation of four points that rotates due to the frequency
difference between the receiver’s local oscillator and the satellite’s oscillator, and
also rotates due to the radial motion of the satellite itself with respect to the
receiver.

If we let Φ (t) = t∆f + ∆t (t) fTX + ∆φ0 then we can correct for rotation by
multiplying R (t) as follows.

R (t) e−2πi(Φ(t)) = S (t+ ∆TTX (t)−∆t (t)) e2πi(Φ(t))e−2πi(Φ(t))

= S (t+ ∆TTX (t)−∆t (t)) (1.4)

This stops the constellation from rotating and removes any constant constellation
rotation offset. This then resolves the composite signal. Hence we define Φ (t) as
the estimated received beat carrier phase by the receiver (estimated carrier phase).
The constellation’s phase (or equivalently the constellation’s rotation offset) is
defined as the difference between the carrier phase and the estimated carrier phase
t∆f +∆t (t) fTX + ∆φ0 − Φ (t). More generally as long as the estimated carrier
phase is in phase with the carrier phase the constellation stops rotating and there
is no constant constellation rotation offset.

1.2.0.3 C/A Code alignment

After the constellation rotation has been stopped by letting the estimated carrier
phase be in phase with the carrier phase, a local replica of the C/A code has
to be mixed with the composite signal and phase shifted in time until the local
replica of the C/A code is in phase with the one that is in the received composite
signal. We then define τ (t) as the C/A code alignment offset and is how much
the incoming C/A is misaligned with the local replica. We define the local replica
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of the C/A code as LCA (t) = C (t+ ∆TRX (t)) where ∆TRX (t) is the receiver’s
clock offset. First we notice that if we offset the local C/A replica by τ (t) and let
τ (t) = ∆t (t) + ∆TRX (t) −∆TTX (t) and multiply this offseted C/A with R (t)
we expect the following for a random time t.

E
[
LCA (t− τ (t))R (t) e−2πi(Φ(t))

]
= E [LCA (t− τ (t))S (t+ ∆TTX (t)−∆t (t))]

= E [C (t+ ∆TTX (t)−∆t (t))S (t+ ∆TTX (t)−∆t (t))]

≈ iE [NAV (t+ ∆TTX (t)−∆t (t))] (1.5)

This is due to the fact that P (Y ) and C are not well cross-correlated, while of
course C is perfectly correlated with itself.

LCA (t− τ (t))R (t) e−2πi(Φ(t)) is the input to the acquisition and tracking block
in figure 1.2. Visually LCA (t− τ (t))R (t) e−2πi(Φ(t)) is a constellation without
any rotation of four points. The two points lying on the imaginary axis move slowly
at no more than 50 times a second and contain the navigation data, while, the
two points that lie on the real axis move very rapidly at up to 10.23 million times
a second in a seemingly random way with a mean value of zero. More generally
when this happens the incoming C/A code is aligned with the local replica and the
carrier phase is in phase with the estimated carrier phase.

1.3 Acquisition, tracking and NAV data extrac-
tion

1.3.0.1 Extraction of NAV data using filtering

When the incoming C/A code is aligned with the local replica and the carrier phase
is in phase with the estimated carrier phase, navigation data can easily be obtained
simply by using a low pass filter
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NAV (t+ ∆TTX (t)−∆t (t)) = −iLPF
[
LCA (t− τ (t))R (t) e−2πi(Φ(t))

]
(1.6)

This allows the GPS receiver access to the satellite’s navigation data which in-
cludes a wealth of data including the satellite’s estimate of ∆TTX (t) and time of
transmission of specific navigation data transitions. Along with data to calculate
the satellites positions.

1.3.0.2 A metric for C/A code alignment and rotation

We restrict t to be within a small period of time 2δ which is less than NAV ’s
period while still ensuring a long enough period such that P (Y ) and C are still
not well correlated over that period. To find such a time period is possible
as NAV ’s period is 204600 times longer than P (Y )’s period. We assume the
C/A codes are perfectly alinged and the the carrier phase is in phase with the
estimated carrier phase. We then expect the following.

E
[
LCA (t− τ (t))R (t) e−2πi(Φ(t))

]
≈ iNAV (t+ ∆TTX (t)−∆t (t)) (1.7)

∴ NAV (t+ ∆TTX (t)−∆t (t))

≈ −i2δ

ˆ k=t+δ

k=t−δ
LCA (k − τ (k))R (k) e−2πi(Φ(k))dk (1.8)

As the navigation data has a constant magnitude of 1, any imperfections in the
correlation between LCA (t− τ (t)) and C (t+ ∆TTX (t)−∆t (t)) due to incor-
rectly estimating τ (t) will affect the magnitude of the acquired navigation data. In
addition, incorrectly estimating Φ (k) causing a rotating constellation motion, will,
after integration also negatively affect the magnitude of the acquired navigation
data. Therefore, we can say the following where γ is defined as the correlation
coefficient between a local time shifted replica of the C/A code and the one being
received that may be rotating.
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γ = −1
4δ2

(ˆ k=t+δ

k=t−δ
LCA (k − τ (k))R (k) e−2πi(Φ(k))dk

)2

(1.9)

This coefficient more generally can be calculated more accurately with averaging;
therefore a GPS receiver could calculate it as follows.

γ = −1
4nδ2

∑
q=1

(ˆ k=tq+δ

k=tq−δ
LCA (k − τ (k))R (k) e−2πi(Φ(k))dk

)2

(1.10)

Squaring eliminates the sign of the BPSK. The magnitude of γ is related to how
well the C/A codes are aligned and how well the rotating motion of the constellation
has been stopped, while the angle of γ is related to the constellation’s constant
rotation offset with a half cycle ambiguity. A constant constellation rotation offset
does not affect the magnitude of γ as a constant rotation offset is just a constant
that can be taken out of the integral. Therefore, gamma will be maximized when
the C/A codes are perfectly aligned and the constellation is not rotating while it
is invariant for constant rotation offset of the constellation.

• |γ|is maximized when C/A codes are aligned and the constellation is not
rotating.

Treating Φ and τ as variables a GPS receiver can vary Φ and τ to maximize γ.
If γ is above a certain threshold the GPS receiver can assume that the satellite is
acquired and to commence tracking τ , Φ, and decoding NAV data.

We are interested in maximizing γ because when it is a maximum, with the addition
of some ambiguity both Φ and τ are good estimates for t4f +∆t (t) fTX +4φ0

and ∆t (t) + ∆TRX (t) − ∆TTX (t) respectively which turns out to be useful in
finding positions solutions. In addition when γ is maximized we are able to obtain
navigation data which is also useful for finding position solutions.

1.3.0.3 First-order linear approximations of unknown functions τ and Φ

We wish to maximize γ , the correlation coefficient. Due to the surface shape
of the magnitude of γ with respect to Φ and τ initial estimates for both Φ and
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τ are required. Without good initial estimates, γ is dominated by noise making
standard tracking schemes such as Phase Locked Loop (PLL), Frequency Locked
Loop (FLL), Delay Locked Loop (DLL) and early/late time useless. It’s like trying
to track an ant crawling in long grass; you have to find it first before you can track
it as the grass makes it difficult to see the ant from afar.

First we create a first order linear approximation model of how Φ and τ change.
We have already seen that when Φ (t) = t4f + ∆t (t) fTX +4φ0 and τ (t) =
∆t (t)+∆TRX (t)−∆TTX (t) we are able to stop rotation and align our local C/A
code replica with the incoming one. Therefore, these are the Φ and τ that we are
looking for. Linear approximations of these two equations are written below where
F (tm) = (∆f + ∆fTX (tm)), ∆fTX (tm) is the change of frequency of fTX due
to Doppler at time tm, where a positive value is for the satellite moving away from
the receiver and θ (tm) and Ξ (tm) are some constants. Proofs can be found in
1.5.1 and 1.5.2.

Φ (t) ≈ tF (tm) + θ (tm) (1.11)

τ (t) ≈ (t− tm)F (tm) −1
f0

+ Ξ (tm) (1.12)

These approximations are only valid if F (tm) does not change to rapidly around
time tm. The maximum rate at which velocity will change is about 0.1178ms−2

and is when the satellite is directly overhead (1.5.4). On the L1 band this implies
that the constellation rotation speed will change by less than about 0.9Hzs−1 if
F (tm) is left unchanged in equation 1.13 ( see 1.5.3 and 1.5.4). Now compare
this to the range of F (tm). ∆fTX (tm) can be as large as about ±5 kHz (1.5.4),
and depending on the receiver clock accuracy∆f could be out by another 5 kHz if
we assume a receiver clock accuracy of 3.5 ppm. This means the range of F (tm)
is in the order of 20 kHz. If we restrict our time of interest to 1ms, then, F (tm)
will change by less than 0.0009Hz which is far less than the range of the 20 kHz
of F (tm). Therefore, for short periods of time this is a valid approximation.

Equations 1.11 and 1.12 form an approximate model of how Φ and τ will change
in the short term.
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1.3.0.4 Further simplifications to the first-order linear approximations of
unknown functions τ and Φ in regard to acquisition

In figure 1.2 the input of the acquisition and tracking block as we have already
seen is written as in equation 1.13.

LCA (t− τ (t))R (t) e−2πi(Φ(t)) (1.13)

To acquire Φ and τ initially we can make further simplifications to equations 1.11
and 1.12. θ (tm) in equation 1.11 when placed in equation 1.13 has no effect
on changing constellation rotation with respect to time. 1.13 will still be a non-
rotating four-point constellation but just with a constant rotation offset of θ (tm)
cycles. As we have already mentioned in equation 1.10, any constant rotation
offset has no effect on the magnitude of the correlation coefficient. Therefore we
can ignore θ (tm) when initially acquiring Φ.

The carrier wave frequency is 1540 times greater than the bit rate of the C/A
code. As frequency times time is phase, if F = 10, 000Hz then it takes 0.025ms
for Φ to change by a quarter of the cycle, while it takes 38.5ms for the C/A
code to change by a quarter of a chip. If we then assume a digitalization of R at
the rate of 4.092Mb/s and sampling 1ms worth of R, more often than not we
couldn’t even detect the difference between F = 0 and F = 10, 000 in the C/A
code directly while it would be easy to detect in the carrier wave.

Due to these two points we make the following two approximations when consid-
ering initial acquisition of Φ and τ . Here we acknowledge that the constellation
will have an arbitrary constant rotation offset, are only valid for periods of time of
a few milliseconds, and baseband sampling rate is no more than a few times per
chip.

Φ (t) ≈ tF (tm) (1.14)

τ (t) ≈ Ξ (tm) (1.15)
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1.3.0.5 Acquisition

With these two approximations 1.14 and 1.15 the receiver can do a two-dimensional
search, F with a frequency dimension and the other Ξ with a time dimension to find
the point that maximizes the correlation coefficient in equation 1.10. Assuming
a receiver clock accuracy of 3.5 ppm, the receiver would have to search from
−10 kHz to 10 kHz. As the C/A code is a periodic function with a period of 1
ms, the receiver would have to search from 0 ms to 1 ms.

Estimating F and Ξ by trying to maximize the correlation between the local C/A
code replica with the incoming one turns out to be computationally demanding us-
ing more energy than tracking, and is a major concern for GPS receivers. Because
of this much research has been directed towards this problem to reduce the com-
putational effort to estimate these two parameters [7]. A parallelized 2D search
by using Fast Fourier Transform (FFT) is a conventional method currently used in
software defined receivers [7].

As an example we cross-correlated a local C/A code replica with an incoming
one on L1. We used a sample rate of 4.092Mb/s being four times the nominal
frequency of the chip rate and searched by varying the frequency term by ±10 kHz
in steps of 125Hz and then using cross correlation varying the time term by no
more than ±511.5 chips (±511.5 chips covers the entire 1ms). Navigation data
was simulated by using random data, while no P(Y) data was added. An offset
of 5000Hz was applied to the 1.57542GHz carrier frequency and a phase offset
of 250.15 chips was applied to the C/A code of the incoming signal. Using 1ms
worth of sequential incoming data, figure 1.3 was obtained.
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Figure 1.3: Correlation coefficient versus phase and frequency offsets. 1 ms of
sequential data of C/A PRN 16 cross-correlation. 4.092Mb/s sampling rate. 16
kb of data, 658,651 evaluation points.

As can be seen there is a clear peak in the graph representing the estimates of F
and Ξ . The estimated phase offset using interpolation around the highest peak
was 250.18 chips while that of the frequency was 5000Hz; this matches well with
the exact values. From this figure it is clear to see why tracking will not work
without good initial estimations of τ and Φ. It’s interesting to note in passing that
the 0.03 chips that the interpolation value was out equates to the time light takes
to travel 9m. This is roughly the correct order of accuracy cheap consumer grade
GPS receivers have.

The number of points needed to be evaluated in figure 1.3 was 658,651.While less
points could have been used and still be able to obtain reasonable estimates for
F and Ξ , by the 2-D search method there are inherently always going to be a
large number of points needed to be evaluated. While other methods such as the
parallelized 2D search by using FFT exist and are less computationally demanding
and hence less energy demanding, acquisition to the best of our knowledge still
uses more energy than tracking. As an example the Ublox NEO-7N which is a
modern consumer grade GPS receiver uses 23% more energy during its acquisition
state than it’s tracking state [3].
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1.3.0.6 Tracking

Once the acquisition has been performed and the point of the maximum correlation
coefficient has been found, the receiver can then track τ and Φ using standard
techniques such as PLL, FLL, DLL and early/late tracking methods. The linear
approximations do not stop the maximum correlation coefficient point from moving
but it slows it down sufficiently that one can treat it as a stationary point until it
has been found then one can simply track it as it moves.

From acquisition, estimates for F and Ξ are obtained, which via equation 1.12
gives an estimate for τ (t). To track τ (t) then early/late tracking can be used.
Such a method usually consists of three locally produced C/A replicas, one slightly
ahead of what is expected from the satellite, one as expected from the satellite,
and one slightly behind what is expected from the satellite.

Early LCA (t− τ (t) + ξ)

Prompt LCA (t− τ (t))

Late LCA (t− τ (t)− ξ)

These three C/A replicas are then each correlated with R (t) e−2πi(Φ(t)) to produce
three correlation coefficients (γE ,γP , γL) and using interpolation a new estimate
for τ (t) can be obtained to keep the code aligned. Keeping the code aligned is
the one of the two requirements for maximizing γ.

LCA (t− τ (t))R (t) has the effect of removing the C/A code from R. This re-
moval is called wiping the code. Once it is removed a carrier tracking scheme
such as a PLL can be used on LCA (t− τ (t))R (t) because in one direction
it appears as a standard BPSK signal. A costas PLL could be performed on
LCA (t− τ (t))R (t) to estimate Φ (t) as it is invariant to the navigation transi-
tions. Assume that we designed the costas loop to align on the imaginary axis.
Then, the costas loop will align NAV ’s BPSK signal along the imaginary axis with
an ambiguity as to which way around it is aligned. The costas loop will also stop
the constellation from rotating which is one of the two requirements for maximizing
γ.
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So, using code tracking and carrier tracking simultaneously the maximum point of
correlation can be continuously tracked. It is not sufficient for a receiver solely to
track only one of τ (t) or Φ (t); both need to be tracked simultaneously.

We have already seen that in 1.3.0.2 τ (t) = ∆t (t)+∆TRX (t)−∆TTX (t) implies
maximum correlation. Due to the 1ms C/A ambiguity the converse is not true.
Therefore we can say that maximum correlation implies τ (t) = ∆t (t)+∆TRX (t)−
∆TTX (t) +M/1000 where M is some fixed integer.

Likewise Φ (t) = t4f + ∆t (t) fTX +4φ0 implies maximum correlation but due
to carrier phase cycle ambiguity and that gamma is maximized for any constant
rotation offset the converse is not true. The costas loop removes the constant
rotation offset with an ambiguity of half a cycle, and if the PLL accumulates its
phase offset rather than resetting it as it passes through an angle of zero, then
maximum correlation implies Φ (t) = t4f + ∆t (t) fTX +4φ0 + N/2 for some
fixed integer N .

τ and Φ when these ambiguities are considered become the two observables used by
almost all low end consumer grade GPS receivers for position solution calculations.

1.4 Observables

Observables are measurements taken by the GPS receiver of quantities that the
GPS receiver can directly measure. Observables do not directly tell you where
the GPS receiver is situated but with using various techniques will allow you to
calculate position solutions that do tell you where the GPS is situated. The two
observables we consider are the code observable and the phase observable.

We have seen by tracking the maximum point of γ using early late timing and a
costas PLL that we have found τ (t) = ∆t (t)+∆TRX (t)−∆TTX (t)+M/1000 for
some fixed integer M and Φ (t) = t4f +∆t (t) fTX +4φ0 +N/2 for some fixed
integer N . These are the code observable and the phase observable respectively
so far. However, there are some added complications and the form they take can
differ.
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1.4.1 The code observable

Once γ is tracked the receiver has access to the navigation data. The navigation
data is sent as 30 bits per word. There are 10 words in a subframe taking 6
seconds to transmit. Each subframe contains a Hand Over Word (HOW) word
that indicates the exact time when the leading-edge of the first bit of the navigation
data was transmitted from the satellite. In the satellite the first bit of every NAV
data transition is aligned to first chip of the the C/A code. This is possible as they
are derived from the same oscillator (see 1.1). Figure 1.4 shows the C/A NAV
timing relationship.

Figure 1.4: C/A NAV timing relationship

Because of this unique time stamp every 6 seconds and that the receiver is con-
tinuously tracking the C/A code of the satellite, each chip of a C/A code can be
uniquely identified with an exact time of transmission. Therefore, the receiver can
resolve the ambiguity M in the code observable and hence can estimate τ (t) such
that τ (t) = ∆t (t) + ∆TRX (t)−∆TTX (t).

Usually the code observable is in units of meters and is called the pseudorange.
Converting τ (t) into meters by multiplying by the speed of light c results in the
following pseudorange equation where the variable time has been removed for
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brevity and ρ is the range from the transmitter at transmission time to receive at
reception time.

p = ρ+ c (∆TRX −∆TTX) (1.16)

1.4.1.1 Calculating code based solutions

The satellite’s current clock bias∆TTX is transmitted in the navigation data and
therefore is a known value. The unknown values are therefore the receiver’s po-
sition and clock bias; together these are P = [x, y, z,∆TRX ]. This means the
pseudorange is a function of these unknown variables. Obtaining one such pseu-
doranges for a satellite results in the following nonlinear equation.

pn (P) = ρn + c (∆TRX −∆T nTX) (1.17)

Because of the ease of solving linear equations, linearization of this equation using
a first order Taylor expansion is sensible for deriving a generalized method of
solving sets of pseudoranges of arbitrary sizes. We let an estimated solution be
P̂ =

[
x̂, ŷ, ẑ,∆T̂RX

]
for time of reception. Then, a first order Taylor expansion

for pn around P̂ is as follows.

pn (P) ≈ pn
(
P̂
)

+ (x− x̂) ∂

∂x
pn

∣∣∣∣∣
P̂

+ (y − ŷ) ∂

∂y
pn

∣∣∣∣∣
P̂

+ (z − ẑ) ∂

∂z
pn

∣∣∣∣∣
P̂

+
(
∆TRX − ˆ∆TRX

) ∂

∂∆TRX
pn

∣∣∣∣∣
P̂

(1.18)

Given a satellite’s position Sn = [xn, yn, zn] at time of transmission for a pseu-
dorange pn, then, the partial derivatives can be calculated given ρn (x, y, z) =√

(x− xn)2 + (y − yn)2 + (z − zn)2. Therefore, upon evaluation, equation 1.18
can be written as follows.
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pn (P)− pn
(
P̂
)
≈ (x− x̂) (x̂− xn)

ρ̂n

+ (y − ŷ) (ŷ − yn)
ρ̂n

+ (z − ẑ) (ẑ − zn)
ρ̂n

+
(
∆TRX − ˆ∆TRX

)
c (1.19)

Given a good estimate P̂, this equation has four independent unknowns, hence
at least four equation just like it are needed to solve the unknowns. These four
equations require the receiver’s clock bias to be the same for all equations and
the receiver’s position to be the same for all equations. Therefore, the receiver
has to obtain four pseudoranges simultaneously. A set of m such pseudoranges for
different satellites obtained simultaneously are given below.

p1 (P) = ρ1 + c
(
∆TRX −∆T 1

TX

)
...

pm (P) = ρm + c (∆TRX −∆TmTX) (1.20)

Because equation 1.19 is linear this set of pseudo ranges can be written in matrix
form as follows.


(x̂−x1)
ρ̂1

(ŷ−y1)
ρ̂1

(ẑ−z1)
ρ̂1

c
... ... ... ...

(x̂−xm)
ρ̂m

(ŷ−ym)
ρ̂m

(ẑ−zm)
ρ̂m

c




(x− x̂)
(y − ŷ)
(z − ẑ)(

∆TRX − ˆ∆TRX
)

 ≈

p1 (P)− p1

(
P̂
)

...
pm (P)− pm

(
P̂
)


(1.21)

Using bold type notation vectors or matrices, this has the form of A
(
P− P̂

)
≈ b

where A, b, and P̂ are known. Using LS and rearranging for the unknown yields
P ≈

(
ATA

)−1
ATb + P̂. The right-hand side of this equation when calculated

yields only an approximation of the desired solution P. Therefore
(
ATA

)−1
ATb+

P̂ is another solution estimate and we denote it as P̂n =
[
x̂n, ŷn, ẑn,∆T̂RXn

]
. So
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we have seen a way of obtaining a new solution estimate from an old solution
estimate. This process can be reiterated as the following algorithm describes.

Algorithm 1.1 Iterative LS solution using code observable

1. P̂0 = [0, 0, 0, 0] , n = 0

2. increment n

3. estimate reception time t̂rx = TRX − ˆ∆TRX

4. calculate Sm at time t̂rx

5. calculate Sm at time t̂rx − ‖Sm − [x̂n, ŷn, ẑn]‖ /c and reitterate a few times

6. if ��∃
(
ATA

)−1
stop wih error

7. P̂n =
(
ATA

)−1
ATb + P̂n−1

8. if ( ‖[x̂n, ŷn, ẑn]− [x̂n−1, ŷn−1, ẑn−1]‖ < less than desired error) stop

9. if (n > to big ) stop with error

10. goto 2

The correction made to the time of reception as believed by the receiver TRX to
produce an estimate of the reception time in step 3, for most receivers would be
small in the order of less than a millisecond and could be conceivably ignored.
The correction needed for calculating an estimate of the time of transmission as
performed in step 5 is generally comparatively large, and is in the order of around
60ms being the approximate flight time from the satellite to the receiver; this step
can’t be ignored.

Figure 1.5 shows an example of algorithm 1.1 converging for a set of six satellites
and code observations taken of them. As can be seen using the center of the Earth
as the initial estimate within six iterations the algorithm has converged.
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Figure 1.5: Example of convergence of algorithm 1.1

The output of this algorithm for the example in figure 1.5 resulted in a receiver
clock bias estimate of −116.644µs. This compares to an estimate as computed
by the receiver itself of −116.738µs with a spatial solution discrepancy of 32m
between the two.

1.4.1.2 Final code observable model

One reason why the discrepancy of 32m between our solution and the solution
as calculated by the GPS receiver itself is we have neglected some things in our
modeling of equation 1.16. The model in equation 1.16 can be extended by adding
tropospheric delays T , ionospheric delays I, multipathMr and miscellaneous errors
er. Therefore, a more exact model of the phase observable can be written as in
the following equation.

p = ρ+ c (∆TRX −∆TTX) + T + I +Mr + er (1.22)

Of the sources of error ionospheric are typically the greatest. The ionosphere
stretches from 50 km to 1000 km above the Earth consisting mainly of charged
particles, charged atoms and charged molecules. A large part of the ionization is
caused by UltraViolet (UV) rays from the sun and hence there is a large diurnal
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change in the Total Electron Count (TEC) which in turn effects the ionospheric
correction term I. The ionosphere can produce a satellite range error as little as
1 m to as much as 100 m [1]. The ionospheric correction term is frequency de-
pendent and with dual band receivers ionospheric free combinations of observables
are possible. For singleband receivers no such combination is possible, instead
Klobuchar ionospheric model is used for singleband receivers GPS. Klobuchar co-
efficients are transmitted in the navigation message so that the receiver can then
estimate ionospheric correction terms. The Klobuchar algorithm corrects about
50% of the ionospheric errors [5].

The important thing for us in this section is that we are able to obtain an approxi-
mate solution, the spatial component with some sort of accuracy less than 100m,
and a time accuracy of some sort less than a 1µs. This is all we are concerned
about regarding the code observable.

1.4.2 The phase observable

The phase observable is a measured quantity taken by the GPS receiver for a par-
ticular satellite for a particular time. Phase observables allows higher accuracy GPS
measurements to be made than compared to that of ones solely using code observ-
ables. This is due to the much shorter wavelength of GPS carrier than compared to
the chip length of the code observable. The wavelength of L1 is approximately 20
cm compared to approximately 300 m length for the code chip of the C/A signal
and can result in a correspondingly large increase in accuracy. The measurement
comes from monitoring the phase difference between the received satellite carrier
and a reference oscillator on the GPS receiver. The receiver accumulates this in-
stantaneous phase difference by tracking and outputs this to the user as the phase
observable. Figure 1.6 shows a block diagram of what the GPS receiver is doing
when observing a satellite for the phase observable neglecting all signals sent on
the carrier such as C/A, navigation and P(Y) code.
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Figure 1.6: Simplified block diagram of phase measurement

For GPS, phase is customary in units of cycles rather than radians or degrees for
GPS work. Phase is the argument inside a trigonometric function that accepts
units of cycles. ΦS is the phase of the carrier of the satellite while ΦU is the
receiver’s reference phase. Both ΦS and ΦU can become arbitrarily large.

Inherent in accumulation of phase is an ambiguity N that depends on when you
started accumulating phase. In addition to the ambiguity there is the possibility of
missing some rotations. Counting the number of times a car tire rotates depends
on when you started counting its rotations and also depends on whether you missed
any rotations. While GPS receivers try to continuously track the phase, this is not
always possible. Due to noise, loss of signal or turning the GPS receiver off and
on again, the tracking of the phase can be lost resulting in an integer change in
the value of N . This produces what is called a “cycle slip”. So, ideally this phase
ambiguity should be fixed while the satellite is being tracked but due to cycle slips
occasionally it will change.

As we have seen satellites don’t send out continuous waves, they are modulated
with two BPSK signals, one in the quadrature phase and the other in the in-phase.
Code tracking has the effect of wiping the C/A code from one of the BPSK signals
but still leaves the navigation adding a level of complexity when trying to track
it. When the BPSK data is not used to regenerate the original carrier wave a
half cycle ambiguity in the carrier phase is introduced into the phase observable
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and it is said that the phase observable has a code factor of two Cf = 2. When
the BPSK data is used to regenerate the original carrier wave, the original carrier
wave can be fully regenerated with an ambiguity of one cycle and it is said that
the phase observable has a code factor of two Cf = 1. Thus the ambiguity of the
phase observable can be reduced when a code factor of one is used.

1.4.2.1 Final phase observable model

As we have seen tracking the carrier phase maximizes γ which in turn means the
accumulated phase while tracking is Φ = t4f + ∆tfTX +4φ0 + N/2 for some
fixed integer N when using a costas PLL. When considering the code factor this
can be written as follows.

Φ = t4f +∆tfTX +4φ0 +N/Cf (1.23)

Assuming the receiver’s clock is based around its local oscillator and its frequency
keeps perfect time, true GPS time can be converted into the time as determined
by the receiver as TRX =

(
tfRX + φRX0

)
/f0. By definition true time plus clock

bias is also the time as determined by the receiver TRX = t + ∆TRX . Equating
the two and rearranging yields the clock bias in term of true GPS time. Likewise
this can be done for the satellite’s clock.

∆TRX =
(
tfRX + φRX0

)
/f0 − t (1.24)

∆TTX =
(
tfTX + φTX0

)
/f0 − t (1.25)

Subtracting the two and multiplying by f0 results in the following.

f0 (∆TRX −∆TTX) = t∆f + ∆φ0 (1.26)

Equating this with equation 1.23 we see that we can write equation 1.23 as follows

Φ = f0 (∆TRX −∆TTX) +∆tfTX +N/Cf
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⇒ Φ = f0 (∆TRX −∆TTX) + 1
λ0
ρfTX/f0 +N/Cf (1.27)

fTX is the oscillator of the GPS transmitter and is an atomic clock being extremely
close to f0. Therefore fTX/f0 = 1 for our purposes and we can rewrite equation
1.27 as follows.

Φ = f0 (∆TRX −∆TTX) + ρ/λ0 +N/Cf (1.28)

This model in equation 1.28 can be extended by adding tropospheric delays T ,
ionospheric delays I, multipath Mφ and miscellaneous errors eφ as was done with
the code observable. However, the ionospheric correction for the phase while
being of the same magnitude of that of the code observable is of the opposite
sign. Therefore, a more exact model of the phase observable can be written as in
the following equation.

Φ = f0 (∆TRX −∆TTX) + (ρ+ T − I +Mφ + eφ) /λ0 +N/Cf (1.29)

The range term ρ in equation 1.29 is for the receiver at reception time tRX and
the satellite at transmission time of tTX . So the distance ρ is a measure of where
you are to where the satellite was a short period of time ago because tTX is an
earlier time than the current time of tRX ; the difference between these two values
is typically around the 60 ms mark and a satellite can move a few hundred meters
in this time.

The phase observable was measured at GPS time tRX , this variable itself has to
be solved for, as you are not going to know exactly what time the measurement
was performed; you know you performed a measurement now, but you don’t know
when now is. This can be obtained using the code observable as previously shown.

The receiver’s clock bias is at tRX while the satellite’s clock bias is at tTX , but
these aren’t so critical as these don’t change rapidly over 60 ms and can safely be
assumed to be constant over the short time periods.

Equation 1.29 is our final model for the phase observable. The left-hand side is
what the receiver gives us, while the right-hand side is what we interpret it as.
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Multiplying it by the satellite’s nominal wavelength is still classified as the phase
observable but rather than units of cycles, the units become meters.
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1.5 Selected proofs

1.5.1 Received phase using flight time approximation.

Taylor expantion of flight time

∆t (t) =
∞∑
k=0

∆t(k)(tm)
k! (t− tm)k

∆t (t) = ∆t (tm) + (t− tm) v(tm)
c

+ (t− tm)2 1
2
a(tm)
c

+ · · ·

First order linear approximation

∆t (t) ≈ ∆t (tm) + (t− tm) v(tm)
c

Define received phase

Φ (t) = t4f −∆t (t) fTX +4φ0

→ Φ (t) ≈ t4f −
(
∆t (tm) + (t− tm) v(tm)

c

)
fTX +4φ0

→ Φ (t) ≈ t
(
4f − v(tm)

c
fTX

)
+ tm

v(tm)
c
fTX −∆t (tm) fTX +4φ0

→ Φ (t) ≈ t
(
4f − v(tm)

c
fTX

)
+ θ (tm)

→ Φ (t) ≈ t (4f −∆fTX) + θ (tm) �

1.5.2 τ First-order linear approximation

∆t (t) ≈ ∆fT X(tm)
fT X

(t− tm) + constant1

∆TTX (t) ≈ fT X(tm)−f0
f0

(t− tm) + constant2

∆TRX (t) ≈ fRX(tm)−f0
f0

(t− tm) + constant3

→ τ ≈ (t− tm) (∆f −∆fTX (tm)) −1
f0

+ Ξ (tm) as fTX ≈ f0
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1.5.3 Radial velocity with constant radial velocity offset ε

What happens with constant velocity offset.

If radial velocity is out by ε at all times then

lim
t→tm

Φ (t) = t4f −
(
∆t (tm) + (t− tm) v(tm)

c

)
fTX + t ε

c
fTX + δ +4φ0

∴ lim
t→tm

Φ (t) = t (4f −∆fTX) + θ′ (tm) + t ε
c
fTX

Where θ′ (tm) and δ are some constants

1.5.4 Maximum radial velocity and acceleration of the satel-
lite with respect to the receiver

Figure 1.7 is a simplified model of satellite orbiting the Earth while transmitting
to a receiver. No relativistic effects are considered and it is assumes that the
satellite’s orbit is perfectly circular with constant tangential velocity and when the
satellite is closest to the receiver the satellite is directly overhead.
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Figure 1.7: Simplified model of a satellite transmitting to a receiver while orbiting

From figure 1.7 we obtain the following equations to describe the system.

x (t) = rs cos
(2πt
T

)
y (t) = rs sin

(2πt
T

)
− re (1.30)

ρ (t) =
√
x2 (t) + y2 (t)

The following approximate generally recognized values for GPS satellite orbital
period T , radius of the earth and radius of GPS satellite orbits were used. By
differentiating the range equation 1.30 figure 1.8 was obtained.
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re = 6371000m

rs = 26600000m (1.31)

T = 43080 s

Figure 1.8: Modeled radial velocity and acceleration

The maximum radial velocity derived from the model was 929ms−1 at satellite
rise time and set time. Maximum acceleration was 0.1178ms−2 and was when the
satellite was directly overhead. [6] (pg 91) states that GPS satellites can have a
radial velocity of up to 800ms−1 with respect to a stationary receiver on earth.
This is consistent with our simplified model. On the L1 band an acceleration of
0.1178ms−2 is approximately a 0.9Hzs−1 doppler shift rate while 929ms−1 on
the L1 band is approximately a 5 kHz doppler shift, therefore f0± 5 kHz must be
searched for the carrier frequency.
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2D two-dimensional

BPSK Binary Phase Shift Keying

C/A Coarse acquisition code

CDMA Code Division Multiple Access

Chip One bit of a PRN code

DLL Delay Locked Loop

FFT Fast Fourier Transform

FLL Frequency Locked Loop

GPS Global positioning system

HOW Hand Over Word

LS Least Squares

NAV Navigation Data

P Precise unencrypted code

PLL Phase Locked Loop

PRN Pseudo Random Number

RF Radio frequency

TEC Total Electron Count

UV UltraViolet

Y Precise encrypted code

29



Nomenclature

30



Bibliography

[1] Klobuchar, j.a. ionospheric effects on gps. gps world, April 1991. Vol. 2, No.
4, pp. 48-51.

[2] Gps.gov: Gps modernization http://www.gps.gov/systems/gps/
modernization/. Webpage, 2014. Modified: Monday, 15 September
2014 12:53:11 p.m.

[3] Neo-7,u-blox 7, gnss modules data sheet. http://www.u-blox.com/images/
downloads/Product_Docs/NEO-7_DataSheet_(GPS.G7-HW-11004).pdf,
May 2014.

[4] Gruber, C. B. Gps modernization and program update. In Munich Satellite
Navigation Summit, Munich, Germany (2011).

[5] Klobuchar, J. Ionospheric time-delay algorithm for single-frequency gps
users. Aerospace and Electronic Systems, IEEE Transactions on AES-23, 3
(May 1987), 325–331.

[6] Van Diggelen, F. A-GPS: Assisted GPS, GNSS, and SBAS. Artech House
Gnss Technology and Applications Library. Artech House, 2009.

[7] Zhou, Y. Dsp in a satellite navigation receiver with a perspective of compu-
tational complexity. Internet, Nov 2013.

31

http://www.gps.gov/systems/gps/modernization/
http://www.gps.gov/systems/gps/modernization/
http://www.u-blox.com/images/downloads/Product_Docs/NEO-7_DataSheet_(GPS.G7-HW-11004).pdf
http://www.u-blox.com/images/downloads/Product_Docs/NEO-7_DataSheet_(GPS.G7-HW-11004).pdf

	1 GPS basics
	1.1 GPS signal
	1.2 What the GPS receiver does to the received WRX(t) signal
	1.2.0.1 Obtaining the baseband signal R(t)
	1.2.0.2 Stopping rotation
	1.2.0.3 C/A Code alignment

	1.3 Acquisition, tracking and NAV data extraction
	1.3.0.1 Extraction of NAV data using filtering
	1.3.0.2 A metric for C/A code alignment and rotation
	1.3.0.3 First-order linear approximations of unknown functions  and 
	1.3.0.4 Further simplifications to the first-order linear approximations of unknown functions  and  in regard to acquisition
	1.3.0.5 Acquisition
	1.3.0.6 Tracking

	1.4 Observables
	1.4.1 The code observable
	1.4.1.1 Calculating code based solutions
	1.4.1.2 Final code observable model

	1.4.2 The phase observable
	1.4.2.1 Final phase observable model


	1.5 Selected proofs
	1.5.1 Received phase using flight time approximation.
	1.5.2  First-order linear approximation
	1.5.3 Radial velocity with constant radial velocity offset 
	1.5.4 Maximum radial velocity and acceleration of the satellite with respect to the receiver


	Nomenclature
	Bibliography

