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An introduction to a  
group theoretic approach to geometry. 

 
By Jonathan Olds. 

 
 

Goals: 
During this short introduction I hope to explain the very rudimentary foundations of how 
one can look at geometry in a group theoretic way. I will describe how this can be done 
using Bachmann’s axioms to form a group. Then I will go on to show various 
consequences of such axioms. I will pitch this essay at someone who has a minimal 
understanding of group theory. 
 

Introduction: 
Geometry was one of the first forms of mathematics studied by ancient civilizations.  
Euclid, who lived around 300 B.C., had already written many books about geometry, the 
contents of which most laypeople today take for granted, and seem to believe this is all 
that geometry is. But, contrary to popular belief, Geometry has progressed in the last few 
thousand years; the group theoretic approach being just a small part of the progress. The 
groups that I will form are called Bachmann groups; and Euclidean, hyperbolic, and 
elliptic geometries are all special cases of such groups. 
 

Motivation for axioms: 
First of all, we need to axiomatise geometry. Where should we begin?  Well, we have to 
decide what sort of geometry we want. Should it be Euclidean, hyperbolic, elliptic, or 
something else?  Would it be possible to encompass all such geometries?  As a place to 
start let's consider only the continuous Euclidean plane in this section and see what we 
can derive. 
 
 Incidence and perpendicularity: 
 Lines are denoted by lowercase Roman letters, a,b,c,… 
 Points are denoted by uppercase Roman letters, A,B,C… 
 Incidence of a point A with a line g is denoted, A I g or g I A. 
 Perpendicular lines a,b are denoted, a ⊥ b or b ⊥ a. 
 A I g, A I h, B I h, B I g, will be denoted A,B I g,h. 
 And so on. 
 
 Mappings: 

For all mappings α and β . Let αβA  be the point A  mapped through α and then 

through β. Likewise αβb  be the line b  mapped through α then β . 
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 Perpendicular collineation: 
A mapping from points to points and lines to lines such that incidence and 
perpendicularity are preserved. 

 
Line reflections: 
A line reflection a, is a bijection on the plane such that lines get mapped to lines, 
and points get mapped to points; it is a perpendicular collineation that preserves 
distance between points. The only fixed lines are a, and all lines perpendicular to 
a.  The only fixed points are points incidence with a. 

 It will be denoted aσ . S will denote the set of all line reflections. 

 
 Point reflections: 

A point reflection P, is a bijection on the plane such that lines get mapped to lines, 
and points get mapped to points, it is a perpendicular collineation that preserves 
distance between points. The only fixed lines are lines incidence with P. The only 

fixed point is P. It will be denoted as Aσ . 

 
 
Let φ  be the relation from lines to line reflections.  Take a line g, distance must be 

preserved and points not on this line must move perpendicular to g.  If you were to have 
taken a point on g, then by definition this point does not move. This means that φ  is a 

function, as everything is defined once you take a line. So take this function, : xφ=σx. 
Then φ  is onto the set of all line reflections by definition.  If ba ≠  then 

      Case 1. a b  

baba aababaaa σσσσ ≠⇒≠⇒≠∧⊥/⇒=⇒ )()(  

      Case 2. a ⊥ b 
 take a point A : (A I a) ∧  (A b) ⇒  Aσa=A ∧  Aσb≠A ⇒  σa≠σb 

∴  φ is a bijection, and there is an identification between lines and  line reflections. 
Let θ be the relation from points to point reflections.  This also is a function, by a similar 
argument as above. So take this function : Aθ=σA. Then θ is onto the set of all point 

reflections by definition. If A≠B then AσA=A but as A≠B ⇒  AσB≠A ∴  θ  is the 
bijection, and there is an identification between points and point reflections. 
This now allows us to treat the concepts of points and point reflections, and line and line 
reflections interchangeably. 
 
 Involutions: 
 An element β, of a group is an involution iff β2=1 and β≠1. 

If two involutions α,β such that αβ is also an involution, will be written as α | β. 
Along the same lines of the notation for perpendicular and incidence we shall use 
similar abbreviations.  E.g. )|,()|()|( βδαβδβα ⇒∧  etc. 
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 Isometry: 
An Isometry is a sequence of line reflections. Isometries will be denoted as 
lowercase Greek letters if not denoted as a single line reflection. M will denote 
the set of all isometries. 

  
 Innerautomorphism: 

The innerautomorphism by an element γ  on an element P , will be denoted as Pγ, 

i.e. γγγ
PP

1−= .  It is also called the transformation of P  by γ .  

 
 Invariant subset of a group: 

A subset of a group that is closed under all innerautomorphisms by elements from 
the group is said to be an invariant subset of the group. 

I.e. given a group M such that MS ⊆  then )())(( SaMSa ∈⇒∈∀∈∀ ββ . 

 
 
Clearly all line and point reflections are involutions. 
 
The set of all isometries M form a group. 
Proof: 
       M≠Ø (obvious)  
       Take a line reflection σa from M, then σaσa∈M ⇒  1∈M. (as σa is an involution) 
       If α,β∈M ⇒  there exists line reflections σα1,…,σαk,σβ1,…,σβn, :  α=σα1…σαk and   
       β=σβ1,…,σβn  ⇒  αβ= σα1…σαkσβ1…σβn ⇒  αβ∈M. 
       If α∈M ⇒  there exists line reflections σα1,..,σαk ∈  M :  α=σα1..σαk   
       ⇒  δ = σαk,..,σα1 ∈  M ⇒  (αδ =1) ∧ (δ α=1) ⇒  α-1∈M. 
       And associativity is given by the fact that the composition function is associative. 
 

 
Proof: 
       Given βα ,  are involutions then… 

 If 1)()( ≠⇒≠∧= αββαβααβ  is βα ≠  

 αβααββαβαβαβ ⇒===⇒ 1)( 2  is an involution. 

 If αβ  is an involution ⇒ )1)(()1( 2 =∧≠ αβαβ  

 βααββαβααβαβ =⇒=⇒=⇒ 1  as αα =−1  and ββ =−1 . 

 Also )()1( βααβ ≠⇒≠ . 

 
 
 
 
 
 

(iii) 
Given βα ,  are involutions then,  

αββαβααβ ⇔≠∧= )()(  is an involution βα |⇔  
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Proof: 

      (3)  αγααγααααγαγ α
BABABABA =⇔=⇔=⇔= − )(1 1  

       αγααγααααγαγ α
ghghghgh =⇔=⇔=⇔= − )(1 1  

     ασασ α BABA hh =⇔= )( , This is true as α is an Isometry.  An easy way to justify     

     this in your own mind, could be to take a piece of paper, draw a line h, with A    
     reflected over it to B, then flip the piece of paper back and forth a few times. Lo and  
     behold, Aα is reflected over hα to Bα. α was the process of flipping the piece of paper  
     back and forth.  To go the other way, just perform the flips in the exact reverse order  

     so you get 1−α  instead of α.  Now, by 3, we have ⇔= BA hσ ασα α
BA h =)(  but this  

     implies that α
α σασα hh AA )()( = .  For any point P, as α is a bijection, there exists an  

     A, such that P=Aα.  This means that ))(( α
α σσ hh PPP =∀  which implies α

α σσ hh = .   

     Similar reasoning can show that α
α σσ PP = . 

 
This allows us to talk about elements of a group being multiplied together instead of a 
line being mapped to another line and then using that line to form a line reflection. 

 
 
 

Proof: 

       The proof of this follows directly from the fact that α
α σσ hh =  (iv). α   Is a bijection  

       from lines to lines which implies that αh  is a line, meaning if S is the set of all line  

       reflections, SS hh ∈⇒∈ α
α σσ . 

 
Now we can proceed by finding the equivalences between incidence and perpendicularity 
with group operations. 

 
 
 
 

Proof: 

      PPgP g =⇔Ι σ   By definition of a line reflection. 

             PP g
σσ σ =⇔  Due to the bijection between point and point reflections. 

             PP

g σσ
σ

=⇔   By iv. 

             PggPPgPg σσσσσσσσ =⇔=⇔ −1  

             gPσσ⇔   Is an involution by (iii) as Pg ≠ . 

             gP σσ |⇔  

 
 

(iv) α
α σσ PP =  and α

α σσ hh =  

(v) the set of all line reflections form an invariant subset of the isometries 

(vi) 
gPgP σσ |⇔Ι  

ghgh σσ |⇔⊥  
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   hhgh g =⇔⊥ σ   By definition of a line reflection. 

             hh g
σσ σ =⇔ hh

g σσ
σ

=⇔ hgghhghg σσσσσσσσ =⇔=⇔ −1  

             ghσσ⇔   Is an involution by (iii) as hg ≠ . 

             gh σσ |⇔  

 

   
 
 
That it is a rotation can easily be visualized in one's head by imagining a piece of paper, 
drawing two lines that intersect on it, flipping it over keeping the first line invariant, and 
then do the same with the second line.  The point that the two lines intersect will have not 
moved, and the piece of paper will be the same side up as it was before the test.  This 
means the only conclusion is that a rotation has been performed around the point of 
intersection.  Now we take a point A, on the line a, such that A ≠ P. This implies that 

AAA bba
′== σσσ , then from a simple symmetry argument (fig1), this implies that A 

has been rotated twice the directed angle from a to b. 
  

 
If, the lines a and b didn't meet, then baσσ  is a translation perpendicular to a and b of 

twice the directed distance from a to b.  That it is a translation can be visualized in a 
similar way to that when the lines intersect. For this visualization any line perpendicular 
to a and b will remain fixed, hence a translation has taken place. To show what this 

translation is, take a point P, on the line a.  Then this implies that PPP bba
′== σσσ , 

again from a simple symmetry argument (fig2), we see that P has been moved twice the 
directed distance from a to b. 

(vii) 
If lines a,b meet at the point P then, 

baσσ  is a rotation around P of two times the directed angle from a to b. 
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It's interesting to note that )(),,,( dcbaPdcba σσσσ =∧Ι  has the meaning that the 

directed angle between the lines a,b is equal to the directed angle between the lines c,d.  
This means that if you were to give me the lines a,b,c, I could measure the distance 
between a and b, then by measuring the same distance starting from c in direction of a to 

b, mark of a line d.  This is just the line we want to produce dcba σσσσ = .  By 

rearranging this equation we get bacd σσσσ = .  Meaning, that for any three line 

reflections through a point, the product is a line reflection.  The consequence of which is 
very important in Bachman groups.  It is given the name of the three line reflection 
theorem, although soon we will take it to be an axiom, which can makes it confusing still 
calling it a theorem.  Likewise by a similar argument there is a corresponding theorem 
concerning three lines all of which, have a common perpendicular. It states, given any 
three lines with a common perpendicular to a line g, there exists a line reflection equal to 
the product of the three lines, also being perpendicular to the line g. i.e. 

 
 
 
 

 
 
 

(vii) is the key in making line reflections the basic building block in our geometry.    
This is so, because in Euclidean geometry, any point has two mutually perpendicular 
lines that intersect it.  Given any point P , and given these two lines g  and h , (vii) 

implies that hgσσ  is a rotation of two right angles, which is exactly half a rotation around 

P , in other words the point reflection Pσ .  The consequence of which means we can 

define a point reflection as compositions of two mutually orthogonal line reflections.  
Thus enabling us to have the points defined by lines (ix). 
 

(viii) 
bacdPdPbac σσσσ =Ι∃Ι∀ :))(,,(  

 bacdgdgbac σσσσ =⊥∃⊥∀ :))(,,(  

(ix) )(:),)(( hgPhgP σσσ =∃∀  
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Due to the identification between lines and line reflections, also, points and point 
reflections, this allows us to, without too much confusion, call point reflections points, 

and a line reflections lines. I.e.   PP =σ   and  gg =σ , “points” are point reflections and 

“lines” are line reflections.  We shall now use this notion henceforth.  Gathering up what 
we have done so far, we embark on defining a group that will describe what we have seen 
so far happening in Euclidean geometry. 
 
We have seen by (ix) that we require only the set of lines, call the set S. S will generate a 
group having composition as its binary relation, call this group M. also, S is required to 
be an invariant subset of M, by (v). From (viii) & (vi) we have 

cabdPdPbac =∃∀ :)|)(|,,(  and cabdgdgbac =∃∀ :)|)(|,,( .   

 
To this list we would also like to have lines between points.  If these points were different 
we would like there to be a unique line joining them, and if they were the same, we 
would like more than one line to intersect that point.  So we add gQPgQP |,:))(,( ∃∀  

and ))()((,|, hgQPhgQP =∨=⇒ , (the existence of more than one line through the 

point when the two points are equal, is established, by the fact that a point can be defined 
as a composition of two perpendicular lines, where the point lies on each of the lines).  
Finally we would also like to remove the possibility of having trivial geometries, 
therefore we introduce, )|()|()|()|(:),,( ghjhjgjhgjhg /∧/∧/∧∃ .  That's it, we have 

our axioms. 
 

Bachmann group: 
  

Given a set S , and the group M  generated by it. “Lines” being elements of S , 
and “points” being elements of M  that are a product of two elements in S  that 
are themselves involutions. Denoting lines by lowercase Roman letters, points by 
uppercase Roman letters. 
 
If the following holds then M  is a Bachmann group. 
 
S  is an invariant subset of M . 
All elements in S  are involutions. 
 

 
 

 
 
 
 
 
 
 
 

Ax1 gQPgQP |,:))(,( ∃∀  

Ax2 ))()((,|, hgQPhgQP =∨=⇒  

Ax3 cabdPdPbac =∃∀ :)|)(|,,(  

Ax4 cabdgdgbac =∃∀ :)|)(|,,(  

AxD )|()|()|()|(:),,( ghjhjgjhgjhg /∧/∧/∧∃  
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Consequences of the axioms: 
 
To help visualize things in this section, remember that the stroke relation, | , can be 
thought of as either, the symbol that tells you that two lines are perpendicular, or a point 
and a line that are incidence. The equivalence relationship (iii) comes up regularly so 
keep it in the forefront of your mind.  
Some very elementary properties of Bachmann groups are as follows, from now on I'll 
use them very frequently without mentioning them.  
 

⇒= ghP

gP

hP

hg

|

|

|

    

 
ghhg || ⇔ , PggP || ⇔ .   

 
None of these are very profound, and they all follow directly from (iii) in the last section.  

For example, gPhPhghP ==⇒= −1 , as g  is an involution, it implies that Ph  is also 

an involution, so, by (iii) hPghPPh |⇒== . 

 
(remark about transformations) 
If,  hg | , then M∈∀α  implies 

ααα αααααααα hghgghPPghPP ====⇒=∃ −−−− 1111: , but as S  is an invariant 

subset of M , means αα
hg ,  are both lines.  Also, by the fact that 1≠α

P , and 

1)( 112 == −− ααααα
PPP  means α

P  is an involution, hence αα
hg | .  That is to say that 

the stroke relation is invariant under transformation.  So remember that points get 
transformed into points, and lines into lines, with incidences and perpendicularity 
preserved. This is done in a 1-1 correspondence, as if 

βδβααδααβδ αα =⇒=⇒= −− 11 . 

 
 
 
It is now necessary to plow through some tedious proofs so we can use them at a later 
date.  It does though give us a good chance to get used to the notation 

 
 
 

Proof: 
Given baPba ||, ∧  

 abba ⇒| is an involution 

 abQQ =∃⇒ :  (def of a point) 

 abQQ =∃⇒ :  

baQ ,|⇒  

Thm1 abPbaPba =⇔∧ ||,   
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baQP =∨=⇒  

If 1=⇒= abba  but 1 is not an involution 
ba |/⇒  

QP =⇒  

abP =∴  
Given abP =  
 Pbaba |,| ∧⇒  

 
 
 
 

Proof: 
Given cba ,,  are pairwise perpendicular, 

if 1≠abc  

abcabcabc =2)(  

abacbc=  (as caac ⇒|  is an involution cacaac ≠∧=⇒ (iii)) 

111 ===== bbbbaabccbabaccb  (contradiction) 
as we are assuming 1≠abc  this means that abc  is an involution. 

abc |⇒  (as ab  is an involution, and also c  and abc ) 

as accacabbabcb =⇒=⇒=⇒ 1,|  which is a contradiction as 

XcaXXac ∧=∃⇒ :| is an involution 1==⇒ aaX .  Involutions can't 

be the identity by definition. 1=∴abc  
Given 1=abc , then  

bacab |⇒=  

caacbcab |⇒=⇒=  

cbabc |⇒=  

 
 
 

 
There are two possibilities for P , either gP |  or gP |/ . 

Case 1:  gP |  

 PgbaabPba |,,:, ⇒=∃⇒  

 Phhabgh |: ∧=∃⇒  (Ax3) 

 hgPhPg =⇒=⇒  

 Phgh || ∧⇒  

As gPPPgPgPPggP
g ≠∧=⇔≠∧=⇔| taking the negation of this means 

gPPPgP
g =∨≠⇔/| , this results in two cases when gP |/ . 

Case 2: PP
g ≠  

 g
PPhh ,|:∃⇒  (Ax1) 

 PPhPPh
gggggg ,|,| ⇒⇒  (remark about transformations) 

Thm2 cba ,,  are pairwise perpendicular ⇔ 1=abc  

Thm3 hPhghPg ||:),( ∧∃∀   (existence of perpendiculars) 
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 PPhhPPhh
gggg =∨=⇒⇒ ,|,  (Ax2) 

 as PP
g ≠  implies hgghhh

g =⇒=   

 hghPgP ≠⇒∧/ ||  

 therefore by (iii) hg |  

 Phgh || ∧⇒  

Case 3: gP =  

 ahPha =∃⇒ :,  

  hghP || ⇒⇒  

 Phgh || ∧⇒  

 
Notice that Thm3 says nothing about uniqueness of perpendiculars.  You might think this 
is a bad thing, but, in elliptic geometry, for every line, there is a point such that, any line 
passing through that point will be perpendicular to the line.  
 
AxD is a cunning little axiom, it uses nothing more than an existence quantifier to say 
that all lines contain at least three points. To demonstrate this we need Thm5. 

 
 
 

Proof: 
by AxD )|()|()|()|(:),,( ghjhjgjhgjhg /∧/∧/∧∃ . 

 

(x) Given three distinct points 321 ,, PPP  on a line a , and any other line b  such that ba |/ , 

by Thm2 bPybPybPyyyy ,|,|,|:,, 332211321 ∧∧∃ , which in turn by the definition of a 

point implies byQbyQbyQQQQ 332211321 :,, =∧=∧=∃ .  If there isn't three points 

distinct on line b , then, without loss of generality 2121 yyQQ =⇒= .  We know that 

aPPyPyP |,|| 212211 ∧∧  so ayPPayPP =∨=⇒ 121121 ,|,  by Ax2.  As 

121 yaPP =⇒≠ , but we know that abyb || 1 ⇒ (contradiction) 

therefore there are three distinct points on b . 
 
(xi) Take any line k , then k  is not perpendicular to all hg,  and j . 

If it was, then hghaga ||| ∧∧  which implies by Thm2 that ghaahg =⇒=1 .  But, as 

jghja || ⇒  (contradicts AxD) , therefore k  is not perpendicular to one of jhg ,, . 

 
For this part of the proof refer to fig3. 
as ghPPhg =∃⇒ :| . (def of a point) 

By Thm3 jaPaa ||: ∧∃  

  ajQQ =∃⇒ :   

 If QP =  

  as jghjPjQ ||| ⇒⇒  (contradicts AxD) 

  QP ≠∴  

Thm5 all lines have at least three points on them. 
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By Thm3 hbQbb ||: ∧∃  

  bhRR =∃⇒ :  
 If RQ =  

  as hQhR || ⇒  

  we know already, haPaQ ,|| ∧  

  haQP =∨=⇒  (Ax2) 

  but, from above QP ≠  which implies ha =  

  as hjaj || ⇒  (contradicts AxD) 

  RQ ≠∴  

 If RP =  
  as aRaP || ⇒  

  we know already, bRbaQ |,| ∧  

  baRQ =∨=⇒  (Ax2) 

  but, from above RQ ≠  which implies ba =  

  hahb || ⇒  

ahPhahaP =⇒∧ |,|  (Thm1) 

  but already we have ghP =  
  ga =⇒  

gjajQ ==⇒  (as ga = ) 

jg |⇒  (contradicts AxD) 

  RP ≠∴  
By Thm3 axRxx ||: ∧∃  

  axTT =∃⇒ :  
 If QT =  

  jxajax =⇒=⇒  

  so we have, bjQR ,|,  

  bjQR =∨=⇒  (Ax2) 

  but, from above QR ≠  which implies bj =  

  as jhbh || ⇒  (contradicts AxD) 

  QT ≠∴  

 If PT =  
  as xPxT || ⇒  

  we know already, hxRhP ,|| ∧  

  hxPR =∨=⇒  (Ax2) 
  but, from above PR ≠  which implies hx =  
  gaghaxPT =⇒===  

as gjaj || ⇒  (contradicts AxD) 

  PT ≠∴  
this now means we have three points QTP ,,  all on line a  that are distinct. 
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By (xi) line a  is not perpendicular to one of jhg ,, .  Say it is h , then by (x) h  has three 

distinct points on it. j   Is not perpendicular to h  therefore by (x) j  has three distinct 

points on it. g  is not perpendicular to j  so g also has three distinct points on it by (x). 

Now, take any line in the group, say k , then by (xi) it is not perpendicular to one of 
jhg ,, , this means by (x) that k  also has three distinct points on it. 

 
 
 
 

 
 
Pencils: 
A pencil is determined by two lines, it is denoted as )(abG , where a  and b  are the lines 

that determine it.  A line c  is said to be in the pencil if abc  is a line, and symbolically 
denoted as )(abGc ∈ . A pencil is a set of lines. 

 
Things to notice about pencils: 
given the pencil )(abG , then, 

aabb =  is a line, so, )(abGa ∈  
a

baba =  is a line, so, )(abGb∈  

)()()( baGcxbacbacycbaccycbaycyabyabcabGc
c ∈⇔=⇔=⇔=⇔=⇔=⇔=⇔∈   

)()()()( cbGabcGaxbcaxabcyabcabGc
a ∈⇔∈⇔=⇔=⇔=⇔∈ . 

The upshot of this is when you see something like cba ′′  you know instantly that 
)( baGc ′∈′ , )( abGc ′∈′ , )( acGb ′′∈ , )( caGb ′′∈ , etc. 

Not all pencils have a point or perpendicular in common, such pencils are called pencils 
without carrier. 
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Proof: 
 
If ca ′=′ , take any line through P , say b  then )( caGbbaabca ′′∈=′′=′′ , and we 

already know that Pb |  

 
If ca ′≠′ , by Thm3 it’s possible to drop perpendiculars from P  to a′  and c′ , do this and 
call these lines respectively a  and c .  As aa ′|  and cc ′| , let ccCaaA ′=∧′= . 

 
If CA = , then AcCc || ′⇒′ , this means that aacyy ′′=∃ :  therefore PacaGa |)( ∧′′∈ . 

 
For this part of the proof refer to fig4. 
If CA ≠ , then by axioms one and two it's possible to join the points A  and C  together 
with a unique line.  Call this line v , from the construction of this line note that vCA |, .  

Now by Thm3 vdPdd ||: ∧∃  .Then by Thm3 it implies that  

vcCvaAca
**** :, =∧=∃ .  

as abcdadcbbPcda =⇒=∃⇒ :|,,  (Ax3) 

as **** |,, dcavcda ⇒  is a line. 

now, v
dcavdcvaAdCAabcCcaabccacba )( **** ====′′=′′ , but as **** |,, dcavcda ⇒  

is a line, this implies that cba ′′  is also a line.  Therefore PbcaGb |)( ∧′′∈ . 

 

 
 
Theorem 13 allows us to find a line in a particular pencil, through any point we want.  
For us, it's practical application, is to allow us to prove the reduction theorem, which is a 
very splendid thing indeed. It states that every product of an even number of lines, is 
equal to the product of two lines, and every product of an odd number of lines, is equal to 
the product of a line and a point. 

Thm13 PbcaGbcaP |)(),,( ∧′′∈∃′′∀  
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(RTi) abuvWbaWvu =∃∀ :),)(,,(  

Proof: 
)(|: uvGgWgg ∈∧∃  by Thm13 

auvgauvGg =∃⇒∈ :)(  (def of pencil) 

gWbbWg =∃⇒ :|  by Thm3 

abuvggWuvW ==⇒  

(RTii) aBuvwBawvu =∃∀ :),)(,,(  

Proof: 
uUU |:∃  Thm5 

)(|: vwGgUgg ∈∧∃  by Thm13 

)()( gvGwvwGg ∈⇒∈  (“things to notice about pencils”) 

hgvwhgvGw =∃⇒∈ :)(  (def of pencil) 

ghvw =⇒  

hbUbb ||: ∧∃  by Thm3 

ugbaaUbgu =∃⇒ :|,,  (Ax3) 

bhBBhb =∃⇒ :|  (def of a point) 

aBbhugbughuvw ===⇒ .  

 
Now, given any element M∈β , that is a sequence of two or more line reflections, by 

induction we see that using RTi and RTii allows us to write it as either, aB  or ab .  If, the 
element is only of length one, say c , then of course this can be written as, aBcccc == , 
by RTii.  If the element is of length zero, well who knows.  In real life, the reduction 
theorem says, that you need not flip a piece of paper over more than three times, to move 
it anywhere you want to.  A corollary to the reduction theorem is that, an involution is 
either a point or a line.  This is so, because all involutions in the group look like ab  or 
aB , ab  is a point by definition, while aB  is a line by Thm3. 
 
In Euclidean geometry, (the one we live in?), we saw from the motivation for the axioms, 
that something of the form ab  was a rotation if the two lines have a point in common, 
and a translation otherwise.  We didn't think at all about what aB  meant, except in the 
case when Ba | , we were unaware of this though, but given Ba |  implies abBb =∃ :  we 

see that baabaB ==  which is just a reflection.  This means there's just one case to go, 
what do the isomorphisms look like when Ba |/ ?  These ones we haven't met to date, 

these are called glide reflections.  I imagine these ones like satellites in space, they rotate 
around their own axis while moving forward. (refer to fig5)  To see this, given a glide 
reflection aB  we can always find, by using Thm3 two times, g  and h  such that 

ahghgB ,|∧= , this implies that h  is parallel to a .  This means that gahaB .= .  Now 

we have a translation ah  then a line reflection g  perpendicular to the direction of 

translation.  So, by the reduction theorem the only isometries in the Euclidean world are 

RT Reduction theorem 
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rotations, translations, reflections, and glide reflections.  This is something people may 
have known but few would have seen.  By using Bachmann groups it's quite provable. 
 
 

 
 
 

Summary: 
Looking at geometry in a group theoretic way is a very interesting take on geometry.  
Some things using this technique are much easier than using traditional coordinates or 
something, while others are far more difficult. Very few English books have been written 
about Bachmann groups. There are only four books that I know about, so recommended 
reading is sparse, the best of these is “H. Behnke et al. (eds), fundamentals of 

mathematics; volume II: geometry, M.I.T Press, 1974.”.  Others are “M. Henle, Modern 

Geometries, Prentice Hall, 1997, 2001”, and “G. Ewald, Geometry: An Introduction, 
Wadsworth, 1971”. After only knowing about Bachmann groups for a few months, I have 
had my question proved as to why there are only four different types of isometries. I have 
heard others describe geometry as beautiful before, and after seeing Bachmann groups, I 
agree. 
 
Jonathan Olds. 
 


